CMPS 200
Commenting and Documenting

Your Programs

e 0l
@AUB Spring 2016-17

Why comment?

» Undocumented programs are notoriously difficult to
understand
= |f you cannot understand a program, then you cannot:
= ensure that the code works correctly
= correct mistakes
» add functionality
That is, you cannot verify and maintain the code
= Analogy: a car that cannot be repaired the first time it breaks
down. It therefore has no value!
» How do mechanics repair a car: they have a shop manual
that describes the cars design, parts, interconnection of
parts, etc

Why worry about program correctness?

= Type “software disasters” into Google!
= RISKS newsgroup

Why worry about program maintenance?

» Mainataining software costs more than developing it in the
first place!
= Analogy: $20K car that costs $80K to run over its lifetime!

Why is software hard to get right?

= Aprogram is a (long) sequence of instructions

= The program is intended to achieve a definite effect

» Transformational program: takes a single input, and
produces a single output

= Program is intended to have some overall effect, i..e, to
compute an output that is some function of the input

= This required effect is usually described by a specification

= The overall effect of a program is the cumulative result of the
effects of each instruction, taken in sequence

= Program is correct: the cumulative effect of the sequence of
instructions is the same as the specification

= Problem: it is difficult to keep track of the cumulative effect of
the instructions

Analogy: directions to a location

You are at location A, and wish to proceed to location B
You are give a sequence of instructions:
» Go forward 100 metres
= Turn right, go 50 metres
= Turn left, go %2 kilometre
= efc
= Problem: given location A and a sequence of such
instructions, how do you compute the final location?
= Answer: computing the final location is extremely difficult,
unless you use a map!!!
= Likewise, computing the final effect of a sequence of
program instructions is extremely difficult, unless you have a
“mental map” of the program’s execution
= The mental map is provided by the programs documentation
= Comments give you “mental checkpoints”

Documenting a program properly

= Given: a specification and a program

= The Problem: document the program with comments, so that
you can check that the program is correct w.r.t. the
specification

= A Solution. For each instruction:

Write a specification comment before the instruction
which states what the instruction is supposed to achive
Write a description comment next to the instruction
which describes the instruction

Write an effect (or summary) comment after the
instruction which states what the instruction has actually
done

Compare specification comment and effect comment.
Use description comment to help make the comparison.

Documenting and reasoning in practice

= Want to use comments to help write the code in the first place

= |deally, the program is then correct by construction

= Start with the specification

= Break it down into a sequence of small steps, and write a
specification comment for each step

= Check the this sequence of steps actually implements the
overall specification

= Write code that implements each specification comment, and
check its correctness

» Use the method in a nested manner for nested constructs
(conditionals, loops)

= When instructions are very simple, can treat several
instructions together (avoid too many comments)

