
CMPS 200

Commenting and Documenting

Your Programs

Spring 2016-17

Spring 2016-17

Why comment?

§  Undocumented programs are notoriously difficult to
understand

§  If you cannot understand a program, then you cannot:
§  ensure that the code works correctly
§  correct mistakes
§  add functionality
That is, you cannot verify and maintain the code

§  Analogy: a car that cannot be repaired the first time it breaks
down. It therefore has no value!

§  How do mechanics repair a car: they have a shop manual
that describes the cars design, parts, interconnection of
parts, etc

Why worry about program correctness?

§  Type “software disasters” into Google!
§  RISKS newsgroup

Why worry about program maintenance?

§  Mainataining software costs more than developing it in the
first place!

§  Analogy: $20K car that costs $80K to run over its lifetime!

Why is software hard to get right?

§  A program is a (long) sequence of instructions
§  The program is intended to achieve a definite effect
§  Transformational program: takes a single input, and

produces a single output
§  Program is intended to have some overall effect, i..e, to

compute an output that is some function of the input
§  This required effect is usually described by a specification
§  The overall effect of a program is the cumulative result of the

effects of each instruction, taken in sequence
§  Program is correct: the cumulative effect of the sequence of

instructions is the same as the specification
§  Problem: it is difficult to keep track of the cumulative effect of

the instructions

Analogy: directions to a location

§  You are at location A, and wish to proceed to location B
§  You are give a sequence of instructions:

§  Go forward 100 metres
§  Turn right, go 50 metres
§  Turn left, go ½ kilometre
§  etc

§  Problem: given location A and a sequence of such
instructions, how do you compute the final location?

§  Answer: computing the final location is extremely difficult,
unless you use a map!!!

§  Likewise, computing the final effect of a sequence of
program instructions is extremely difficult, unless you have a
“mental map” of the program’s execution

§  The mental map is provided by the programs documentation
§  Comments give you “mental checkpoints”

Documenting a program properly

§  Given: a specification and a program
§  The Problem: document the program with comments, so that

you can check that the program is correct w.r.t. the
specification

§  A Solution. For each instruction:
§  Write a specification comment before the instruction

which states what the instruction is supposed to achive
§  Write a description comment next to the instruction

which describes the instruction
§  Write an effect (or summary) comment after the

instruction which states what the instruction has actually
done

§  Compare specification comment and effect comment.
Use description comment to help make the comparison.

Documenting and reasoning in practice

§  Want to use comments to help write the code in the first place
§  Ideally, the program is then correct by construction
§  Start with the specification
§  Break it down into a sequence of small steps, and write a

specification comment for each step
§  Check the this sequence of steps actually implements the

overall specification
§  Write code that implements each specification comment, and

check its correctness
§  Use the method in a nested manner for nested constructs

(conditionals, loops)
§  When instructions are very simple, can treat several

instructions together (avoid too many comments)

